Deglacial radiocarbon history of tropical Atlantic thermocline waters: absence of CO2 reservoir purging signal
نویسندگان
چکیده
A current scenario to explain much of the atmospheric CO2 increase during the Glacial to Holocene climate transition requires the outgassing of a deep, old oceanic CO2 reservoir thought to be located in the Southern Ocean. In this scenario, CO2-rich and 14C-depleted subsurface Antarctic-sourced water, ventilates the thermocline where it is purged to the atmosphere in the equatorial regions, a view that has been met with conflicting results. Using a novel approach (paired surface and deep-dwelling planktonic foraminifer radiocarbon analyses), we document that the equatorial Atlantic thermocline did not see old, 14C-depleted water, which would be characteristic of the proposed isolated deep ocean CO2 reservoir. Data from several studies concur that, during the deglaciation, Antarctic intermediate waters were contributing to Atlantic thermocline waters even more than today, therefore, our observations challenge the current purging hypothesis. Together with other studies, these results suggest that the mechanism responsible for the deglacial CO2 rise cannot invoke contemporary circulation modes and/or thermocline ventilation pathways. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific
The deep ocean is most likely the primary source of the radiocarbon-depleted CO2 released to the atmosphere during the last deglaciation. While there are well-documented millennial scale Δ14C changes during the most recent deglaciation, most marine records lack the resolution needed to identify more rapid ventilation events. Furthermore, potential age model problems with marine Δ14C records may...
متن کاملStrong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas
We present a benthic foraminiferal multiproxy record of eastern equatorial Atlantic (EEA) middepth water (1295m) covering the last deglacial. We show that EEA middepth water temperatures were elevated by 3.9 ± 0.5°C and 5.2 ± 1.2°C during Heinrich event 1 (H1) and Younger Dryas (YD), respectively. The radiocarbon content of the EEA middepth during H1 and YD is relatively low and comparable to t...
متن کاملMarine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise.
We reconstructed the radiocarbon activity of intermediate waters in the eastern North Pacific over the past 38,000 years. Radiocarbon activity paralleled that of the atmosphere, except during deglaciation, when intermediate-water values fell by more than 300 per mil. Such a large decrease requires a deglacial injection of very old waters from a deep-ocean carbon reservoir that was previously we...
متن کاملRadiocarbon Reservoir Age of High Latitude North Atlantic Surface Water During the Last Glacial
The radiocarbon reservoir age of high latitude North Atlantic Ocean surface water is essential for linking the continental and marine climate records, and is expected to vary according to changes in North Atlantic Deep Water (NADW) production. Measurements from this region also provide important input and/or tests of oceanic radiocarbon using 3-D global ocean circulation models. Here, we presen...
متن کاملDeep water formation in the North Pacific and deglacial CO2 rise
Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640m in the North East Pacific. These show a pronounced excursion...
متن کامل